martes, 16 de febrero de 2010

21st Century



In the 21st century, technology is being developed even more rapidly, especially in electronics and biotechnology. Broadband Internet access became commonplace in developed countries, as did connecting home computers with music libraries and mobile phones.




Research is ongoing into quantum computers, nanotechnology, bioengineering, nuclear fusion (see ITER and DEMO), advanced materials (e.g., enhanced armor), the scramjet (along with railguns and high-energy beams for military uses), superconductivity, the memristor, and green technologies such as alternative fuels (e.g., fuel cells, plugin hybrid cars) and more efficient LEDs and solar cells.

The understanding of particle physics is also expected to expand through particle accelerator projects, such as the Large Hadron Collider – the largest science project in the world and neutrino detectors such as the ANTARES. Theoretical physics currently investigates quantum gravity proposals such as M-theory, superstring theory, and loop quantum gravity.




Spacecraft designs are also being developed, i.a. under the Project Constellation (see Orion and Ares V). The James Webb Space Telescope will try to identify early galaxies as well as the exact location of the Solar System within our galaxy, using the infrared spectrum. The finished International Space Station will provide an intermediate platform for space missions and zero gravity experiments. Despite challenges and criticism, NASA and ESA plan a manned mission to Mars in the 2030s.

20th Century





20th Century technology developed rapidly. Communication technology, transportation technology, broad teaching and implementation of scientific method, and increased research spending all contributed to the advancement of modern science and technology. Due to the scientific gains directly tied to military research and development, technologies including electronic computing might have developed as rapidly as they did in part due to war. Radio, radar, and early sound recording were key technologies which paved the way for the telephone, fax machine, and magnetic storage of data. Energy and engine technology improvements were also vast, including nuclear power, developed after the Manhattan project. Transport by rocketry: most work occurred in the U.S. (Goddard), Russia (Tsiolkovsky) and Germany (Oberth). Making use of computers and advanced research labs, modern scientists have recombinant DNA.

The National Academy of Engineering, by expert vote, established the following ranking of the most important technological developments of the 20th century:

Electrification
Automobile
Airplane
Water supply and Distribution
Electronics
Radio and Television
Mechanised agriculture
Computers
Telephone
Air Conditioning and Refrigeration
Highways
Spacecraft
Internet
Imaging
Household appliances
Health Technologies
Petroleum and Petrochemical Technologies
Laser and Fiber Optics
Nuclear technologies
Materials science

lunes, 15 de febrero de 2010

19th century






The 19th century saw astonishing developments in transportation, construction, and communication technologies originating in Europe, especially in Britain. The Steam Engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. The first purpose built railway line opened between Manchester and Liverpool in 1830, the Rocket locomotive of Robert Stephenson being one of the first working locomotives used on the line. Telegraphy also developed into a practical technology in the 19th century to help run the railways safely.

Other technologies were explored for the first time, including the Incandescent light bulb. The Portsmouth Block Mills was where manufacture of ships' pulley blocks by all-metal machines first took place and instigated the age of mass production. Machine tools used by engineers to manufacture other machines began in the first decade of the century, notably by Richard Roberts and Joseph Whitworth. Steamships were eventually completely iron-clad, and played a role in the opening of Japan and China to trade with the West. Mechanical computing was envisioned by Charles Babbage but did not come to fruition. The Second Industrial Revolution at the end of the 19th century saw rapid development of chemical, electrical, petroleum, and steel technologies connected with highly structured technology research.

Industrial Revolution







The British Industrial Revolution is characterized by developments in the areas of textile manufacturing, mining, metallurgy and transport driven by the development of the steam engine. Above all else, the revolution was driven by cheap energy in the form of coal, produced in ever-increasing amounts from the abundant resources of Britain. Coal converted to coke gave the blast furnace and cast iron in much larger amounts than before, and a range of structures could be created, such as The Iron Bridge. Cheap coal meant that industry was no longer constrained by water resources driving the mills, although it continued as a valuable source of power. The steam engine helped drain the mines, so more coal reserves could be accessed, and the output of coal increased. The development of the high-pressure steam engine made locomotives possible, and a transport revolution followed.

jueves, 11 de febrero de 2010

Age of Exploration

The sailing ship (Nau or Carrack) enabled the Age of Exploration with the European colonization of the Americas, epitomized by Francis Bacon's The New Atlantis. Pioneers like Vasco de Gama, Cabral, Magellan and Christopher Columbus explored the world in search of new trade routes for their goods and contacts with Africa, India and China which shortened the journey compared with traditional routes overland. They also re-discovered the Americas while doing so. They produced new maps and charts which enabled following mariners to explore further with greater confidence. Navigation was generally difficult however owing to the problem of longitude and the absence of accurate chronometers. European powers rediscovered the idea of the civil code, lost since the time of the Ancient Greeks.

Renaissance




The era is marked by such profound technical advancements like the printing press, linear perceptivity, patent law, double shell domes or Bastion fortresses. Note books of the Renaissance artist-engineers such as Taccola and Leonardo da Vinci give a deep insight into the mechanical technology then known and applied. Architects and engineers were inspired by the structures of Ancient Rome, and men like Brunelleschi created the large dome of Florence Cathedral as a result. He was awarded one of the first patents ever issued in order to protect an ingenious crane he designed to raise the large masonry stones to the top of the structure. Military technology developed rapidly with the widespread use of the cross-bow and ever more powerful artillery, as the city-states of Italy were usually in conflict with one another. Powerful families like the Medici were strong patrons of the arts and sciences. Renaissance science spawned the Scientific Revolution; science and technology began a cycle of mutual advancement.

Muslim Agricultural Revolution

From the 8th century, the medieval Islamic world witnessed a fundamental transformation in agriculture known as the "Muslim Agricultural Revolution", "Arab Agricultural Revolution", or "Green Revolution". Due to the global economy established by Muslim traders across the Old World during the "Afro-Asiatic age of discovery" or "Pax Islamica", this enabled the diffusion of many crops, plants and farming techniques between different parts of the Islamic world, as well as the adaptation of crops, plants and techniques from beyond the Islamic world, distributed throughout Islamic lands which normally would not be able to grow these crops. The diffusion of numerous crops during this period led, along with an increased mechanization of agriculture, led to major changes in economy, population distribution, vegetation cover, agricultural production and income, population levels, urban growth, the distribution of the labour force, linked industries, cooking and diet, clothing, and numerous other aspects of life in the Islamic world.

Muslim engineers in the Islamic world were responsible for numerous innovative industrial uses of hydropower, the early industrial uses of tidal power, wind power, and petroleum, and large factory complexes (tiraz in Arabic). The industrial uses of watermills were in widespread use since the 8th century. A variety of industrial mills were developed in the Islamic world, including fulling mills, gristmills, hullers, paper mills, sawmills, shipmills, stamp mills, steel mills, sugar mills, and windmills. By the 11th century, every province throughout the Islamic world had these industrial mills in operation, from al-Andalus and North Africa to the Middle East and Central Asia. Muslim engineers also developed crankshafts and water turbines.

A significant number of inventions were produced by Muslim scientists and engineers during this time, including inventors such as Abbas Ibn Firnas, Taqi al-Din, and especially al-Jazari. Some of the developments from the Islamic Golden Age include the coffee, hard soap, shampoo, nitric acid, alembic, valve, reciprocating, quilting, surgical catgut, windmill, inoculation, fountain pen, cryptanalysis, frequency analysis, quartz glass, modern cheque, explosive rockets and incendiary devices.